
Plenary lectures and sessions 33

Fractal Variations

Izabella Foltynowicz

Adam Mickiewicz University, Theoretical

Chemistry Department

Andrzej Walat

 OEIIZK

 Ul. Grunwaldzka 6, PL 60-780,

Poznań, Poland

 Ul. Nowogrodzka 73, PL 02-006,

Warsaw, Poland

iza@rovib.amu.edu.pl andrzej@oeiizk.waw.pl

Abstract

“It seems so easy for nature to produce forms of great beauty. Yet in the past art has mostly just had to be content to
imitate such forms. But now with the discovery that simple programs can capture the essential mechanism for all
sorts of complex behaviour in nature, one can imagine just sampling such programs to explore generalizations of the
forms we see in nature” (S. Wolfram, 2002). Our main aim is to experiment with simple procedures, written in
Imagine Logo, which “generate pictures that have striking aesthetic qualities – sometimes reminiscent of nature, but
often unlike anything ever seen before” (S. Wolfram, 2002).

Keywords

Fractals, Sierpiński Triangle, Logo, Imagine Logo, Sierpiński Gasket, Relatives of the Sierpiński
Gasket

1. Introduction

We were brought up with the paradigm that a good and professional programmer always

starts from the exact specification of the task, i.e. a clear and unambiguous description of

what the program should do, and only after that he starts programming. Therefore we are a bit

ashamed to confess that we both have a bad habit of looking at various simple programs and

trying to modify them, very often without any clear goals. We have discovered, however, that

such attitude to the programming activity may be extremely rewarding. We are happy that we

found not so long ago a strong support to our way of thinking in the famous Wolfram’s book

A New Kind of Science.

“In our everyday experience with computers, the programs that we encounter are normally set

up to perform very definite tasks. But the key idea that I had nearly twenty years ago – and

that eventually led to the whole new kind of science in this book – was to ask what happens if

one instead just looks at simple arbitrarily chosen programs, created without any specific task

in mind. How do such programs typically behave?”

During the last EUROLOGO 2003 conference one of the two authors (I. F.) presented a paper

that represents just that kind of attitude. She started from a relatively simple and common

shape – the Sierpiński triangle – and generated a rich variety of interesting objects by small

modifications of the rules. Now, once again, we have started from the same point but

followed other paths and by this we have discovered a new rich variety of interesting relatives

of the Sierpiński triangle (Peitgen et al. 1992a).

34 Eurologo 2005, Warsaw

2. Starting point

Every child with an interest in mathematics knows the Sierpiński triangle. It seems impossible

that such a simple object could hide anything unexpected. But probably everybody was

surprised while learning the rules for the first time and seeing the results of the chaos game.

We, like everyone, were very impressed while reading interesting pages devoted to the

Sierpiński triangle and chaos game in the renowned book by Peitgen et al. (1992b). At the

same time we were rather disappointed that the simple rules of the chaos game were translated

into such a long, sophisticated and unclear code, i.e. - the computer program written in Basic

in Peitgen et al. (1992c) and the about forty lines long code for a graphical calculator in

Peitgen et al. (1998). They are in stark contrast to a very short, clear, and at the same time,

very general, procedure we can write in Imagine Logo:

to go :apoint :listofpoints

 setpos :apoint dot

 go (:apoint + pick :listofpoints) / 2 :listofpoints

end

This simple procedure gives us an opportunity to explore a variety of interesting cases. Using

the go procedure with the input parameters [0 0][[-100 -100] [100 -100] [50 100]]

we get the kind of Sierpiński triangle that is shown in Figure 1a, however with just a slight

change of the input parameters, go [0 0][[-80 -100] [150 -100] [30 150] [-120

100]], we get a decorated quadrilateral as shown in Figure 1b.

Figure 1. Sierpinski polygons

3. The first step – Addition of a scale factor

Instead of using a constant scale factor in the go procedure, as it was done in the example

above, we can add a scale parameter:

to go :ap :lp :sc

 setpos :ap dot

 go :sc * :ap + (1 - :sc) * pick :lp :lp :sc

end

Using the go procedure with the input parameters [0 0][[-100 –100] [100 –100] [50

100] [-150 150]] 0.45 we get another variant of the Sierpiński quadrilateral. To get more

Plenary lectures and sessions 35

regular shapes we define the auxiliary operation ngon which returns the list of the all vertices

of the regular polygon:

to ngon :n :r

 let “lp []

 let “a 360 / :n

 repeat :n [make “lp fput :r * se sin repc * :a cos repc * :a :lp]

 op :lp

end

After cs go [0 0] ngon 5 150 (3 - sqrt 5) / 2 we get a pentagonal shape as shown in

Figure 2a, whereas after cs go [0 0] ngon 8 150 1 / (2 + sqrt 2) – we get an

octagonal shape as in Figure 2b. These two figures are examples of interesting distant

relatives of the Sierpiński triangle since they are built according to similar rules but on the

basis of another regular polygon.

Figure 2. Two examples of ST relatives

Of course, it is also possible to achieve Figure 2a through the use of deterministic procedures:

to sierpent :n :side :scale

 if :n = 0 [pentagon :side stop]

 repeat 5 [sierpent :n – 1 :scale * :side :scale jfd :side rt 72]

end

to pentagon :side

 repeat 5 [fd :side rt 72]

end

to jfd :d

 pu fd :d pd

end

4. The second step – Variations of Sierpiński pentagons

The sierpent procedure is a good starting point for creating a variety of variants which, in

spite of their deterministic character, generate pictures that look chaotic. Let us demonstrate

one of the countless examples.

36 Eurologo 2005, Warsaw

to spent :n :sd :sc :a

 if :n = 0 [stop]

 repeat 5

 [

 rt :a pd spent :n – 1 :sc * :sd :sc :a lt :a

 setpc (se 45 + 30 * :n 255 – 30 * :n 0) setpw :n + 2 dot

 jfd :sd rt 90

]

end

Using spent 6 200 0.5 0, we get a regular geometrical shape shown in Figure 3a.

Using spent 6 200 0.5 45, on the other hand , we get a more organic shape shown in

Figure 3b:

Figure 3. Pentagonal organic shapes

5. The third step – Why not add a bit of randomness?

Let us add a bit of randomness to the spent procedure:

to spent :n :sd :sc :a

 if :n = 0 [stop]

 repeat 5

 [

 if random 7 > 0 [rt :a pd spent :n – 1 :sc * :sd :sc :a lt :a]

 setpc (se 45 + 30 * :n 255 – 30 * :n 0) setpw :n + 2 dot

 jfd :sd rt 90

]

end

Plenary lectures and sessions 37

With that modified procedure we can generate more interesting and organic-like random

shapes - see Figure 4.

Figure 4. Pentagonal random shapes

6. The fourth step – Exploiting rotations of the square

In this section we will exploit the rotations of the square to generate a whole family of shapes.

Let us denote this family by RS – rotated squares. The simplest example of the rich family of

shapes is an ordinary square. The more complex shape is built of the three simpler ones,

which are rotated according to the rules illustrated in figure 5.

Figure 5. Rotated squares

To see more complex examples we have to run the following drs procedure:

to drs :code :n :s

 let “n1 mod :code 4 let “code div :code 4

 let “n2 mod :code 4 let “n3 div :code 4

 ars :n1 :n2 :n3 :n :s

end

38 Eurologo 2005, Warsaw

to ars :n1 :n2 :n3 :n :s

 rs :n :s [0 0 0] 128

end

to rs :n :s :rgb :d

 if :n = 0 [setpc :rgb polygon list 4 list :s 90 stop]

 lt 90 repeat :n1 [jfd :s / 2 rt 90]

 rs :n – 1 :s / 2 :rgb + (list :d 0 0) :d / 2

 if :n1 > 0 [repeat 4 - :n1 [jfd :s / 2 rt 90]]

 lt 90 repeat :n2 [jfd :s / 2 rt 90]

 rs :n – 1 :s / 2 :rgb + (list 0 :d 0) :d / 2

 if :n2 > 0 [repeat 4 - :n2 [jfd :s / 2 rt 90]]

 lt 90 repeat :n3 [jfd :s / 2 rt 90]

 rs :n – 1 :s / 2 :rgb + (list 0 0 :d) :d / 2

 if :n3 > 0 [repeat 4 - :n3 [jfd :s / 2 rt 90]]

 lt 90

end

to jfd :a

 pu fd :a pd

end

The command drs 26 8 240 gives the result shown in the left part of Figure 6. The

command drs 57 8 240 gives, again, the Sierpiński triangle, shown in the right part of

Figure 6.

Figure 6. The two results of the drs procedure

7. The fifth step – Cumulated RS

By modifying slightly the rs procedure, which was used in the program above, we get a tool

for generating cumulated RS shapes:

Plenary lectures and sessions 39

to rs :n :s :rgb :d

 setpc :rgb polygon list 4 list :s 90

 if :n = 0 [stop]

 lt 90 repeat :n1 [jfd :s / 2 rt 90]

 rs :n – 1 :s / 2 :rgb + (list :d 0 0) :d / 2

 if :n1 > 0 [repeat 4 - :n1 [jfd :s / 2 rt 90]]

 lt 90 repeat :n2 [jfd :s / 2 rt 90]

 rs :n – 1 :s / 2 :rgb + (list 0 :d 0) :d / 2

 if :n2 > 0 [repeat 4 - :n2 [jfd :s / 2 rt 90]]

 lt 90 repeat :n3 [jfd :s / 2 rt 90]

 rs :n – 1 :s / 2 :rgb + (list 0 0 :d) :d / 2

 if :n3 > 0 [repeat 4 - :n3 [jfd :s / 2 rt 90]]

 lt 90

end

Two examples of shapes generated by that procedure are shown in Figure 7.

Figure 7. Two examples of cumulated RS shapes

8. The sixth step – Seeing the simple and cumulated RS shapes together

If we modify the auxiliary ars procedure and add a new rs0 procedure, we will get a tool

that allows us to see simple and cumulated RS shapes together:

to ars :n1 :n2 :n3 :n :s

 rs :n :s [0 0 0] 128

 setpc “white setpw 2

 rs0 :n :s

end

to rs0 :n :s

 if :n = 0 [dot stop]

 lt 90 repeat :n1 [jfd :s / 2 rt 90]

40 Eurologo 2005, Warsaw

 rs0 :n – 1 :s / 2

 if :n1 > 0 [repeat 4 - :n1 [jfd :s / 2 rt 90]]

 lt 90 repeat :n2 [jfd :s / 2 rt 90]

 rs0 :n – 1 :s / 2

 if :n2 > 0 [repeat 4 - :n2 [jfd :s / 2 rt 90]]

 lt 90 repeat :n3 [jfd :s / 2 rt 90]

 rs0 :n – 1 :s / 2

 if :n3 > 0 [repeat 4 - :n3 [jfd :s / 2 rt 90]]

 lt 90

end

The drs command modified in that way will now give results as shown in Figure 8.

Figure 8. Simple and cumulated RS shapes joined together

9. The seventh step – Adding reflection to rotations

The RS family consist of only 64 members (the four rotations, when applied to three figures

will give 4
3
 = 64 different attractors), but if we include the reflections (additionally to

rotations), we will get a much richer and interesting family comprising 512 members (8

symmetry transformations of a square gives 8
3
 = 512 possibilities). Of course, we must

modify our procedures appropriately once again:

to shortdemo

 repeat 10 [demors random 512 wait 5000]

end

to demors :code

 cs setbgcolour [155 165 205] rt 180

 drs :code 7 240

 pu setpos [-210 –190] pd

 setheading 0 setpc “black tt :code

end

Plenary lectures and sessions 41

to drs :code :n :s

 let “c div :code 8 let “a mod :code 8

 let “n1 mod :c 4 let “c div :c 4

 let “n2 mod :c 4 let “n3 div :c 4

 let “a1 180 * (mod :a 2) - 90 let “a div :a 2

 let “a2 180 * (mod :a 2) - 90 let “a3 180 * (div :a 2) - 90

 ars :n1 :n2 :n3 :a1 :a2 :a3 :n :s

end

to ars :n1 :n2 :n3 :a1 :a2 :a3 :n :s

 rs :n 90 :s [255 255 255] 128

 setpc “green3 setpw 2

 rs0 :n 90 :s

end

to rs :n :a :s :rgb :d

 setpc :rgb polygon list 4 list :s :a

 if :n = 0 [stop]

 lt :a repeat :n1 [jfd :s / 2 rt :a]

 rs :n – 1 :a1 :s / 2 :rgb - (list :d 0 0) :d / 2

 if :n1 > 0 [repeat 4 - :n1 [jfd :s / 2 rt :a]]

 lt :a repeat :n2 [jfd :s / 2 rt :a]

 rs :n – 1 :a2 :s / 2 :rgb - (list 0 :d 0) :d / 2

 if :n2 > 0 [repeat 4 - :n2 [jfd :s / 2 rt :a]]

 lt :a repeat :n3 [jfd :s / 2 rt :a]

 rs :n – 1 :a3 :s / 2 :rgb - (list 0 0 :d) :d / 2

 if :n3 > 0 [repeat 4 - :n3 [jfd :s / 2 rt :a]]

 lt :a

end

to rs0 :n :a :s

 if :n = 0 [dot stop]

 lt :a repeat :n1 [jfd :s / 2 rt :a]

 rs0 :n – 1 :a1 :s / 2

 if :n1 > 0 [repeat 4 - :n1 [jfd :s / 2 rt :a]]

 lt :a repeat :n2 [jfd :s / 2 rt :a]

 rs0 :n – 1 :a2 :s / 2

 if :n2 > 0 [repeat 4 - :n2 [jfd :s / 2 rt :a]]

 lt :a repeat :n3 [jfd :s / 2 rt :a]

 rs0 :n – 1 :a3 :s / 2

 if :n3 > 0 [repeat 4 - :n3 [jfd :s / 2 rt :a]]

 lt :a

end

42 Eurologo 2005, Warsaw

Figure 9 shows examples of randomly chosen pictures drawn with the shortdemo procedure:

Figure 9. Two examples of extended RS family

After finishing this paper we have discovered an excellent book Frame & Mandelbrot ed.

(2002), whose authors exploit similar ideas but in a different way and with different results.

References

Foltynowicz Izabella (2003). The algorithmic Beauty of Recursive Structures, EUROLOGO

2003, 91-101.

Frame M.,Mandelbrot B.B. ed. (2002). Fractals, Graphics and Mathematics Education., The

Mathematical Association of America.

Heinz-Otto Peitgen, Hartmut Jurgens, (1992a) Dietmar Saupe, Chaos and Fractals. New

Frontiers of Science, Springer-Verlag, 244-251.

Peitgen H.O., RichterP. H (1986). The Beauty of Fractals. Springer-Verlag Berlin,

Heidelberg.

Peitgen H.O., Jürgens H., Saupe D. (1992b). Fractals for the Classroom. Part 1: Introduction

to Fractals and Chaos. Springer-Verlag New York.

Peitgen H.O., Jürgens H., Saupe D. (1992c). Fractals for the Classroom. Part 2: Complex

Systems and Mandelbrot Set. Springer-Verlag New York.

Peitgen H.O., Jürgens H., Saupe D., Maletsky E., Perciante T, Yunker L. (1998). Fractals for

the Classroom. Strategic Activities Volume One. NCTM, Springer-Verlag New York.

Wolfram S. (2002). A New Kind of Science. Wolfram Media, Inc.

