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Abstract 

“It seems so easy for nature to produce forms of great beauty. Yet in the past art has mostly just had to be content to 
imitate such forms. But now with the discovery that simple programs can capture the essential mechanism for all 
sorts of complex behaviour in nature, one can imagine just sampling such programs to explore generalizations of the 
forms we see in nature” (S. Wolfram, 2002). Our main aim is to experiment with simple procedures, written in 
Imagine Logo, which “generate pictures that have striking aesthetic qualities – sometimes reminiscent of nature, but 
often unlike anything ever seen before” (S. Wolfram, 2002). 
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1. Introduction 

We were brought up with the paradigm that a good and professional programmer always 

starts from the exact specification of the task, i.e. a clear and unambiguous description of 

what the program should do, and only after that he starts programming. Therefore we are a bit 

ashamed to confess that we both have a bad habit of looking at various simple programs and 

trying to modify them, very often without any clear goals. We have discovered, however, that 

such attitude to the programming activity may be extremely rewarding. We are happy that we 

found not so long ago a strong support to our way of thinking in the famous Wolfram’s book 

A New Kind of Science.  

“In our everyday experience with computers, the programs that we encounter are normally set 

up to perform very definite tasks. But the key idea that I had nearly twenty years ago – and 

that eventually led to the whole new kind of science in this book – was to ask what happens if 

one instead just looks at simple arbitrarily chosen programs, created without any specific task 

in mind. How do such programs typically behave?” 

During the last EUROLOGO 2003 conference one of the two authors (I. F.) presented a paper 

that represents just that kind of attitude. She started from a relatively simple and common 

shape – the Sierpiński triangle – and generated a rich variety of interesting objects by small 

modifications of the rules. Now, once again, we have started from the same point but 

followed other paths and by this we have discovered a new rich variety of interesting relatives 

of the Sierpiński triangle (Peitgen et al. 1992a). 
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2. Starting point 

Every child with an interest in mathematics knows the Sierpiński triangle. It seems impossible 

that such a simple object could hide anything unexpected. But probably everybody was 

surprised while learning the rules for the first time and seeing the results of the chaos game. 

We, like everyone, were very impressed while reading interesting pages devoted to the 

Sierpiński triangle and chaos game in the renowned book by Peitgen et al. (1992b). At the 

same time we were rather disappointed that the simple rules of the chaos game were translated 

into such a long, sophisticated and unclear code, i.e. - the computer program written in Basic 

in Peitgen et al. (1992c) and the about forty lines long code for a graphical calculator in 

Peitgen et al. (1998). They are in stark contrast to a very short, clear, and at the same time, 

very general, procedure we can write in Imagine Logo: 

to go :apoint :listofpoints 

  setpos :apoint dot 

  go (:apoint + pick :listofpoints) / 2 :listofpoints 

end 

This simple procedure gives us an opportunity to explore a variety of interesting cases. Using 

the go procedure with the input parameters [0 0][[-100 -100] [100 -100] [50 100]] 

we get the kind of Sierpiński triangle that is shown in Figure 1a, however with just a slight 

change of the input parameters, go [0 0][[-80 -100] [150 -100] [30 150] [-120 

100]], we get a decorated quadrilateral as shown in Figure 1b. 

 

Figure 1. Sierpinski polygons 

3. The first step –  Addition of a scale factor 

Instead of using a constant scale factor in the go procedure, as it was done in the example 

above, we can add a scale parameter: 

to go :ap :lp :sc 

  setpos :ap dot 

  go :sc * :ap + (1 - :sc) * pick :lp :lp :sc 

end 

Using the go procedure with the input parameters [0 0][[-100 –100] [100 –100] [50 

100] [-150 150]] 0.45 we get another variant of the Sierpiński quadrilateral. To get more 
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regular shapes we define the auxiliary operation ngon which returns the list of the all vertices 

of the regular polygon: 

to ngon :n :r 

  let “lp [] 

  let “a 360 / :n 

  repeat :n [make “lp fput :r * se sin repc * :a cos repc * :a :lp] 

  op :lp 

end 

After cs go [0 0] ngon 5 150 (3 - sqrt 5) / 2 we get a pentagonal shape as shown in 

Figure 2a, whereas after cs go [0 0] ngon 8 150 1 / (2 + sqrt 2) – we get an 

octagonal shape as in Figure 2b. These two figures are examples of interesting distant 

relatives of the Sierpiński triangle since they are built according to similar rules but on the 

basis of another regular polygon. 

 

Figure 2. Two examples of ST relatives 

Of course, it is also possible to achieve Figure 2a through the use of deterministic procedures: 

to sierpent :n :side :scale 

  if :n = 0 [pentagon :side stop] 

  repeat 5 [sierpent :n – 1 :scale * :side :scale jfd :side rt 72] 

end 

to pentagon :side 

  repeat 5 [fd :side rt 72] 

end 

to jfd :d 

  pu fd :d pd 

end 

4. The second step – Variations of Sierpiński pentagons 

The sierpent procedure is a good starting point for creating a variety of variants which, in 

spite of their deterministic character, generate pictures that look chaotic. Let us demonstrate 

one of the countless examples. 
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to spent :n :sd :sc :a 

  if :n = 0 [stop] 

  repeat 5 

  [ 

  rt :a pd spent :n – 1 :sc * :sd :sc :a lt :a  

  setpc (se 45 + 30 * :n 255 – 30 * :n 0) setpw :n + 2 dot 

  jfd :sd rt 90 

  ] 

end 

Using spent 6 200 0.5 0, we get a regular geometrical shape shown in Figure 3a.  

Using spent 6 200 0.5 45, on the other hand , we get a more organic shape shown in 

Figure 3b: 

 

Figure 3. Pentagonal organic shapes 

5. The third step – Why not add a bit of randomness? 

Let us add a bit of randomness to the spent procedure: 

to spent :n :sd :sc :a 

  if :n = 0 [stop] 

  repeat 5 

  [ 

  if random 7 > 0 [rt :a pd spent :n – 1 :sc * :sd :sc :a lt :a]  

  setpc (se 45 + 30 * :n 255 – 30 * :n 0) setpw :n + 2 dot 

  jfd :sd rt 90 

  ] 

end 
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With that modified procedure we can generate more interesting and organic-like random 

shapes - see Figure 4. 

 

Figure 4. Pentagonal random shapes 

6. The fourth step – Exploiting rotations of the square  

In this section we will exploit the rotations of the square to generate a whole family of shapes. 

Let us denote this family by RS – rotated squares. The simplest example of the rich family of 

shapes is an ordinary square. The more complex shape is built of the three simpler ones, 

which are rotated according to the rules illustrated in figure 5.  

 

Figure 5. Rotated squares 

To see more complex examples we have to run the following drs procedure: 

to drs :code :n :s 

  let “n1 mod :code 4 let “code div :code 4 

  let “n2 mod :code 4 let “n3 div :code 4 

  ars :n1 :n2 :n3 :n :s 

end 
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to ars :n1 :n2 :n3 :n :s 

  rs :n :s [0 0 0] 128 

end 

to rs :n :s :rgb :d 

  if :n = 0 [setpc :rgb polygon list 4 list :s 90 stop] 

  lt 90 repeat :n1 [jfd :s / 2 rt 90] 

  rs :n – 1 :s / 2 :rgb + (list :d 0 0) :d / 2 

  if :n1 > 0 [repeat 4 - :n1 [jfd :s / 2 rt 90]] 

  lt 90 repeat :n2 [jfd :s / 2 rt 90] 

  rs :n – 1 :s / 2 :rgb + (list 0 :d  0) :d / 2 

  if :n2 > 0 [repeat 4 - :n2 [jfd :s / 2 rt 90]] 

  lt 90 repeat :n3 [jfd :s / 2 rt 90] 

  rs :n – 1 :s / 2 :rgb + (list 0 0 :d) :d / 2 

  if :n3 > 0 [repeat 4 - :n3 [jfd :s / 2 rt 90]] 

  lt 90 

end 

to jfd :a 

 pu fd :a pd 

end 

The command drs 26 8 240 gives the result shown in the left part of Figure 6. The 

command drs 57 8 240 gives, again, the Sierpiński triangle, shown in the right part of 

Figure 6. 

 

Figure 6. The two results of the drs procedure 

7. The fifth step – Cumulated RS 

By modifying slightly the rs procedure, which was used in the program above, we get a tool 

for generating cumulated RS shapes: 
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to rs :n :s :rgb :d 

  setpc :rgb polygon list 4 list :s 90  

  if :n = 0 [stop] 

  lt 90 repeat :n1 [jfd :s / 2 rt 90] 

  rs :n – 1 :s / 2 :rgb + (list :d 0 0) :d / 2 

  if :n1 > 0 [repeat 4 - :n1 [jfd :s / 2 rt 90]] 

  lt 90 repeat :n2 [jfd :s / 2 rt 90] 

  rs :n – 1 :s / 2 :rgb + (list 0 :d  0) :d / 2 

  if :n2 > 0 [repeat 4 - :n2 [jfd :s / 2 rt 90]] 

  lt 90 repeat :n3 [jfd :s / 2 rt 90] 

  rs :n – 1 :s / 2 :rgb + (list 0 0 :d) :d / 2 

  if :n3 > 0 [repeat 4 - :n3 [jfd :s / 2 rt 90]] 

  lt 90 

end 

Two examples of shapes generated by that procedure are shown in Figure 7.  

 

Figure 7. Two examples of cumulated RS shapes 

8. The sixth step – Seeing the simple and cumulated RS shapes together 

If we modify the auxiliary ars procedure and add a new rs0 procedure, we will get a tool 

that allows us to see simple and cumulated RS shapes together:  

to ars :n1 :n2 :n3 :n :s 

  rs :n :s [0 0 0] 128 

  setpc “white setpw 2 

  rs0 :n :s 

end 

to rs0 :n :s 

  if :n = 0 [dot stop] 

  lt 90 repeat :n1 [jfd :s / 2 rt 90] 
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  rs0 :n – 1 :s / 2  

  if :n1 > 0 [repeat 4 - :n1 [jfd :s / 2 rt 90]] 

  lt 90 repeat :n2 [jfd :s / 2 rt 90] 

  rs0 :n – 1 :s / 2  

  if :n2 > 0 [repeat 4 - :n2 [jfd :s / 2 rt 90]] 

  lt 90 repeat :n3 [jfd :s / 2 rt 90] 

  rs0 :n – 1 :s / 2  

  if :n3 > 0 [repeat 4 - :n3 [jfd :s / 2 rt 90]] 

  lt 90 

end 

The drs command modified in that way will now give results as shown in Figure 8. 

 

Figure 8. Simple and cumulated RS shapes joined together 

9. The seventh step – Adding reflection to rotations 

The RS family consist of only 64 members (the four rotations, when applied to three figures 

will give 4
3
 = 64 different attractors), but if we include the reflections (additionally to 

rotations), we will get a much richer and interesting family comprising 512 members (8 

symmetry transformations of a square gives 8
3
 = 512 possibilities). Of course, we must 

modify our procedures appropriately once again: 

to shortdemo 

  repeat 10 [demors random 512 wait 5000] 

end 

to demors :code 

  cs setbgcolour [155 165 205] rt 180 

  drs :code 7 240 

  pu setpos [-210 –190] pd 

  setheading 0 setpc “black tt :code 

end 



Plenary lectures and sessions  41 

to drs :code :n :s 

  let “c div :code 8 let “a mod :code 8 

  let “n1 mod :c 4 let “c div :c 4 

  let “n2 mod :c 4 let “n3 div :c 4 

  let “a1 180 * (mod :a 2) - 90 let “a div :a 2 

  let “a2 180 * (mod :a 2) - 90 let “a3 180 * (div :a 2) - 90 

  ars :n1 :n2 :n3 :a1 :a2 :a3 :n :s 

end 

to ars :n1 :n2 :n3 :a1 :a2 :a3 :n :s 

  rs :n 90 :s [255 255 255] 128 

  setpc “green3 setpw 2 

  rs0 :n 90 :s 

end 

to rs :n :a :s :rgb :d 

  setpc :rgb polygon list 4 list :s :a 

  if :n = 0 [stop] 

  lt :a repeat :n1 [jfd :s / 2 rt :a] 

  rs :n – 1 :a1 :s / 2 :rgb - (list :d 0 0) :d / 2 

  if :n1 > 0 [repeat 4 - :n1 [jfd :s / 2 rt :a]] 

  lt :a repeat :n2 [jfd :s / 2 rt :a] 

  rs :n – 1 :a2 :s / 2 :rgb - (list 0 :d  0) :d / 2 

  if :n2 > 0 [repeat 4 - :n2 [jfd :s / 2 rt :a]] 

  lt :a repeat :n3 [jfd :s / 2 rt :a] 

  rs :n – 1 :a3 :s / 2 :rgb - (list 0 0 :d) :d / 2 

  if :n3 > 0 [repeat 4 - :n3 [jfd :s / 2 rt :a]] 

  lt :a 

end 

to rs0 :n :a :s 

  if :n = 0 [dot stop] 

  lt :a repeat :n1 [jfd :s / 2 rt :a] 

  rs0 :n – 1 :a1 :s / 2  

  if :n1 > 0 [repeat 4 - :n1 [jfd :s / 2 rt :a]] 

  lt :a repeat :n2 [jfd :s / 2 rt :a] 

  rs0 :n – 1 :a2 :s / 2  

  if :n2 > 0 [repeat 4 - :n2 [jfd :s / 2 rt :a]] 

  lt :a repeat :n3 [jfd :s / 2 rt :a] 

  rs0 :n – 1 :a3 :s / 2  

  if :n3 > 0 [repeat 4 - :n3 [jfd :s / 2 rt :a]] 

  lt :a 

end 
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Figure 9 shows examples of randomly chosen pictures drawn with the shortdemo procedure: 

 

Figure 9. Two examples of extended RS family 

After finishing this paper we have discovered an excellent book Frame & Mandelbrot ed. 

(2002), whose authors exploit similar ideas but in a different way and with different results. 
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