
124  Eurologo 2005, Warsaw 

 

Session: Software 

2005-08-29 PM 

 

Lhogho – The Real Logo Compiler 

Pavel Boytchev 

Independent researcher 

Sofia, Bulgaria 

pavel@elica.net 

Abstract 

This paper announces the beginning of the design and the implementation of a new Logo compiler - Lhogho. 
Discussed are the motivation for starting this adventure and the current results. The Lhogho compiler is a real 
compiler. It translates Logo programs into machine code. The first version, written in GCC, targets the Pentium family 
of processors under Linux and Windows operating systems. 

Keywords 

Lhogho, Logo, compiler 

1. Motivation 

Logo has a long history. Its roots can be traced a few decades back in the past, but still it is a 

live programming language - there are thousands of Logo users and new Logo 

implementations come forward regularly. There are 140 Logo dialects, and 20% of them are 

still active (Boytchev P, 2003). Nowadays Logo is considered one of the most dynamic 

languages. Many Logo environments are interactive – users enter commands for immediate 

execution, variables can be created at run-time and they can be accessed indirectly by 

composing their names on the fly, and finally, it is possible to build new commands 

programmatically. 

Although all these features are proudly enumerated when the benefits of Logo are discussed, 

they are a real nightmare for the developers. It is believed that these Logo features come from 

the unified way of representation of data and programs. However, this is true only for the 

user. Internally each implementation uses special techniques to represent and to preprocess 

executable lists in order to increase performance. The properties of Logo make it ideal for 

interpreting but not for compiling. Many other languages are interpreted. Why do we need a 

Logo compiler? Do we need to compile Logo programs at all? 

We may consider interpretation as a better alternative for beginners, but when they get more 

experienced, they often start to write bigger and more complex programs that need 

considerable time for execution. At this point performance plays a significant role in the 

decision whether to continue with Logo or to move to a "more professional" language. 

Developers can adequately respond to any user request. Multiple turtles, modern GUIs, 

multimedia? Yes, there are Logo solutions for all these. What about performance? Well, Logo 



Paper Session 2005-08-29  125 

 

developers make their best to provide the highest possible performance of interpretation. 

Many efforts are spent in optimizing internal structures and algorithms, but programs still 

appear to run much slower than similar programs in other languages. 

One of the key goals of starting to write a Logo compiler is to make it possible for Logo 

programs to run fast enough to encourage professional and soon-to-be professional 

programmers to consider Logo as a valid choice. 

Logo gurus will argue that building a compiler will be at the cost of loosing the core benefits 

of Logo - its spiritual heart that makes it stand out of the crowd of available programming 

languages. If this were an acceptable price for having a compiler, then it would be not too 

difficult to write such a compiler. This is not the point, because more or less this is already a 

routine task for an experienced translator developer. What really does matter is how to make a 

compiler that supports all interpreter-only features. Now that's what turns the making of a 

Logo compiler into a real and irresistible challenge. 

2. Evolutionary concepts 

Writing a Logo compiler is hard. It is so hard, that there is no successful recent attempt to 

make such. The last know complete Logo compiler, ObjectLogo, appears to be non-supported 

(Digitool, 1999). This paper will not discuss the difficulties of writing a Logo compiler. 

Instead it will present one simple idea - the only way to make a Real Logo Compiler
1
 is to 

make it like a living creature. 

Any compiled Logo program should have the complete Logo functionality in itself. This is a 

reasonable way to provide all the dynamic features. When a binary file is generated, it should 

be transmittable and executable on another compatible machine without the compiler. If the 

program runs dynamically generated Logo commands and expressions, then it needs the 

                                                 
1 The phrase Real Logo Compiler can be read in several ways, depending on the personal preferences of the 

reader. It could be (Real (Logo Compiler)) or ((Real Logo) Compiler). Both interpretations are equally correct, 

or at least are considered during compiler design. For infix aficionados we can provide yet another parsing: 

((Real Compiler) for Logo). 

Logo Program A 

(source code) 

 

Logo Program A 

(binary code) 

Lhogho 

(binary code) 

Logo Program B 

(source code) 

Logo Program B 

 (binary code) 

Lhogho 

(binary code) 
compilation compilation 

created by a user created by program A 

 source 

 generation 

Figure 1.         Logo program A is compiled by Lhogho into binary code, which contains the original 

compiler. Program A can generate the Logo source of another program – program B, which may be 

a modified version of A or an entirely new program. Program A may compile B into binary code 

which will inherit only the Lhogho code from A. 



126  Eurologo 2005, Warsaw 

 

possibility to compile. A way to resolve the problem is to embed the compiler (or a significant 

portion of it) inside every compiled by it program. 

What is the relation with a living creature? Think of the Logo compiler as of DNA containing 

all Logo “chromosomes”. Compiling a source program into an executable program is like 

giving birth to a child – the child contains the characteristics of the parent, but is somewhat 

different – Figure 1. The difference is caused by the user's Logo program. The rest of the 

program, the Lhogho core, is the same. It is still not clear whether the third binary program in 

Figure 1 should contain the code of A or not. Idealy, the binary of B will contain the compiled 

code of B and the Lhogho core. If we want to have A-B-Lhogho, then A should “append” its 

source code to the code of B. 

When the binary file is run it will do what is "commanded" in its DNA. The presence of 

genetic code from the parent will make the child inherit all features, including the ability to 

give birth to other Logo programs that can give birth to more Logo programs, and so on. 

Following the same pattern of thoughts, the result of using conventional compilers and 

interpreters for "professional" languages corresponds to giving birth to a mule - creature that 

dies without issue. 

Organic DNA is well compacted - millions of genetic bits are packed in a cell. This raises an 

important question about Lhogho. Will it be small enough to be reproduced in the compiled 

program? A typical modern Logo interpreter can be big up to several megabytes - a size that 

is quite unacceptable if the actual user program is small. The concern about compiler's size 

gives additional thrill to the problem. 

3. Current status 

3.1. Basic design details 

The main design goal is to have a multitarget Logo compiler. That is why Lhogho is written 

in GCC (Free Software Foundation, 2005). This will make it easy to recompile the same 

sources for different hardware platforms and operating systems. Unfortunately, this is not the 

whole picture about multitargeting. Processors have different instruction sets and Lhogho 

should be aware of this. Even if processors are the same, the difference in operating systems 

might be crucial for the compiler. 

The Lhogho sources can be compiled for the following targets: Fedora (Red Hat, 2005b), MS-

Dos (Wikipedia, 2005), Cygwin (Red Hat, 2005a) and Windows (Microsoft, 2005). Only 

Pentium 386 compatible processors and above are supported. 

3.2. Primitives 

All primitives are embedded in the compiler. It does not rely on extensions like Elica libraries 

(Elica, 2004) and the UCBLogo macro definitions (Harvey B, 2004), because the evolutionary 

concept requires a single-file compiler. It is not only efficiency that dicatates this, but also 

transportability. If we compile a Logo program into a standalone binary, we would like to take 

it and execute it at another place. If the compiler uses external libraries, they must be copied 

too. That’s why there are plans to span Lhogho in the minimal possible number of files – 

ideally just 1 file, for the compiler itself. 



Paper Session 2005-08-29  127 

 

Transportability raises the question about localization of Lhogho. Namely, the translation of 

all primitives and error messages into another language. All texts, which Lhogho understands 

(primitives like FIRST and BF, and special words like TRUE and FALSE) as well as all texts that 

Lhogho generates (mainly error messages) are insulated in a separate source file. To localize 

Lhogho for a specific language it is needed to translate only the texts in this file and to 

recompile the compiler. 

At the time of writing this paper, Lhogho supports more than 100 primitives including 

synonyms. Almost all of them are the same as in UCBLogo – see Figure 2. This is another 

important decision - to maintain a compatibility with the mainstream free Logo dialects 

UCBLogo and MSWLogo (Softronics, 2000) and functional compatibility with Elica. There 

are few exceptions only. For example, conditions in Lhogho can be either "TRUE or "FALSE. 

Lists are not allowed (as it is in UCBLogo’s WHILE). Property lists, arrays and mutators are 

not implemented. Nested TO..END are allowed. 

3.3. Performance 

It is too early to measure performance and to compare Lhogho with other Logo dialects. Only 

several simple tests are done so far. The preliminary results show a performance around 10 

times better than other Logos.  

The achieved speed is mainly due to the translation to machine code. However, it is also a 

result of a redesigned memory handling and garbage collection. Although Lhogho is a true 

compiler, it supports native Logo datatypes – numbers, words and lists. Like in all other Logo 

implementations, variables are untyped. The internal garbage collection is distributed along 

the whole program execution by counting references to allocated memory. Atoms are freed on 

the fly instead of during a centralized GC process. The primary result of this approach is that 

no freezing is observed during execution.  

Atom allocation and deallocation is handled by Lhogho memory handler. It is optimized for 

frequent requests. Atom size is only 16 bytes and is fixed for all data types. When compared 

Operators: 
* / + - = < > <= >= <> and or 

not all any 

Selectors: 
first butfirst bf last butlast 

bl item 

Constructors: 
word list sentence se fput lput 

Predicates: 
word? wordp list? listp number? 

numberp empty? emptyp equal? 

equalp notequal? notequalp 

before? beforep less? lessp 

greater? greaterp lessequal? 

lessequalp greaterequal? 

greaterequalp member? memberp 

Queries: 
count char ascii lowercase 

uppercase member parse 

Arithmetic: 
sum difference minus product 

quotient remainder int round 

sqrt power exp log10 ln 

Trigonometric: 
pi sin radsin cos radcos arctan 

radarctan arctanxy radarctanxy 

Sequences and randoms: 
iseq rseq random rerandom 

Transmitters: 
print pr ? show type form format 

Control structures: 
to end true false if ifelse 

repeat while until run forever 

ignore  

Variables: 
" : make local thing 

Figure 2.         A list of reserved words already implemented in Lhogho. More commands and 

functions are being added continuously. 



128  Eurologo 2005, Warsaw 

 

with other Logo implementations Lhogho tends to use less memory, so spills done by the OS 

appear only in extreme cases. Even when programs use a huge amount of atoms (lists of 

several millions of atoms), no memory management delay is observed. 

All performance advantages are observed when Logo program uses known in advance 

variables and commands. In tests where variables' names are generated in real time, 

performance is decreased. It gets even worse when a dynamic creation and execution of 

source code is placed inside a loop. In such cases, the compiler may become slower than some 

interpreters. 

The following subsections provide some preliminary benchmarks. Tests are not designed to 

measure the performance of various Logo implementations, so they should not be used for 

any significant comparison. The idea it just to see how Lhogho scores against other Logos. 

Intensive and scientifically valid benchmark test will be done when Lhogho is complete. 

All tests are done on the same computer (Pentium 4, 2.8GHz, 512MB RAM, Windows XP 

Home). The following Logo versions are used: UCBLogo 5.3, MSWLogo 6.5b, aUCBLogo 

4.66 (Micheler A, 2005), Imagine 2.0 (Demo), Elica 5.4 and Lhogho. 

For all test the performance of UCBLogo is accepted as a standard. 

Arithmetic benchmark 

This benchmark measures arithmetic calculations. The test program calculates Σ1
/n for 

n∈[1..N]. The value of N starts from 1,000 and for each test it increases by a factor of 10 until 

it reaches 1,000,000,000. Here is the program for N=1,000: 

make "s 0 

make "n 1 

repeat 1000 

[ 

  make "s :s + 1 / :n 

  make "n :n + 1 

] 

The results (see Table 1) clearly show that the compiled code is much faster than 

interpretated. Note that in all test the time is rounded towards the nearest integer second, and 

the time for Lhogho contains compiler loading, compilation and execution. 

Table 1. Arithmetic benchmark 

 Elica MSWLogo UCBLogo aUCBLogo Imagine Lhogho 

N = 10
3
 - - - - - - 

N = 10
4
 2 - - - - - 

N = 10
5
 22 3 1 1 1 - 

N = 10
6
 224 26 7 7 7 1 

N = 10
7
 - 261 157 69 66 6 

N = 10
8
 - - - 682 599 59 

N = 10
9
 - - - - - 587 

 
14.3 

times slower 
1.7  

times slower 
1.0  

standard 

2.3  
times faster 

2.6  
times faster 

26.8  
times faster 

Values, marked with the minus sign are either too fast or too slow. Only results from 1 to 

1,000 seconds are shown. 



Paper Session 2005-08-29  129 

 

List processing and memory managing 

This benchmark measures memory allocation and deallocation by creating a long list of 

numbers and then reversing the list. The number of elements N starts from 1,000 and goes up 

to 10,000,000. The Logo program from N=1,000 is: 

make "n 1000 

make "a [ ] 

repeat :n 

[ 

  make "a fput :n :a  

  make "n :n-1 

] 

make "b [ ] 

while not empty? :a 

[ 

  make "b fput first :a :b 

  make "a bf :a 

] 

Only results from 1 to 120 seconds are shown. The time limit is set to 2 minutes, because 

most Logo interpreters use too much memory for lists of 1 million elements and the operating 

system starts to swap memory. Due to the optimized memory manager and the small atom 

size, Lhogho is the only Logo that created and reversed a list of 10 million elements in less 

than 10 seconds. 

Table 2. List processing and memory managing benchmark 

 Elica MSWLogo Imagine UCBLogo aUCBLogo Lhogho 

N = 10
3
 7 - - - - - 

N = 10
4
 - 1 - - - - 

N = 10
5
 - 12 2 2 1 - 

N = 10
6
 - 115 18 18 13 1 

N = 10
7
 - - - - - 8 

 
381.2 

times slower 
6.4  

times slower 
1.2  

times slower 
1.0  

standard 

1.4  
times faster 

22.6  
times faster 

Indirect access 

The last benchmark is for a program that accesses a variable through an expression. Indirect 

access is used for both reading the value of a variable and changing its value. The program 

calculates Σ1
/n but distributes the individual members of the series into three variables 

(selection is done in real time). Here is the program for N=1,000: 

make "a 0 

make "b 0 

make "c 0 

make "v "abc 

make "n 0 

repeat 1000 

[ 

  make "n :n + 1 

  make "w first :v 

  make "v word bf :v :w 

  make :w (thing :w) + 1 / :n 

] 

The expectation is that a simple compiler that does not analyze the dataflow of a program 

could not use optimized access to variables which names are not known at compile time. For 



130  Eurologo 2005, Warsaw 

 

such cases Lhogho inserts machine code instructions which scan the names of all accessible 

variables (the binary program contains not only instructions but some information about the 

names of the variables and their run-time locations in memory). The following table confirms 

that indirect access decreases the greatest compiler advantage – performance, but on the other 

hand it proves that typical Logo features can be implemented in a compiler. 

Table 3. Indirect access benchmark 

 Elica Imagine MSWLogo UCBLogo aUCBLogo Lhogho 

N = 10
3
 1 - - - - - 

N = 10
4
 4 1 1 - - - 

N = 10
5
 45 6 6 4 2 1 

N = 10
6
 459 54 52 35 16 10 

N = 10
7
 - 542 535 375 163 100 

 
12.2 

times slower 
1.4  

times slower 
1.4  

times slower 
1.0  

standard 

2.3  
times faster 

3.8  
times faster 

The results from this benchmark show that Lhogho is only few times faster than interpreted 

Logos. It is expected that if a program often generates and executes whole Logo instructions 

and program fragments, the performance of some interpreters may become comparable to the 

performance of the compiler. 

Lhogho supports the RUN command, so functionally there is no need to support indirect access 

to variables as a special feature. However, Lhogho distinguishes between these two cases, 

because indirect access can be precompiled directly into binary code and it does not require 

real-time compilation, which is much slower.  

3.4. Other functions 

The current version of Lhogho compiles a complete Logo program into computer memory 

and executes it from there. The compiler has several options, which control its behaviour. It 

can insert additional machine instructions that trace the runtime execution flow; i.e. what 

functions are called and what are the values of their parameters. Another option is to output 

the assembly language mnemonics as text. For debug purposes the compiler may embed code 

to trace memory activities and detect memory leaks.  

The current implementation of the compiler is not interactive, because interactivity should be 

delivered by the Lhogho environment. Thus, Lhogho is just a command-line compiler, which 

compiles a source file. 

4. Future work 

The development of Lhogho will pass through three phases until it reaches it first release. 

• Phase 1 – support of all control structures and core Logo commands and functions. This 

includes first-class functions; functions for processing numbers, lists and words; 

conditional execution; definition of user routines. 

• Phase 2 – support of graphical commands and functions (like turtle graphics), file access, 

etc. When phase 2 is completed, the compiler will be functionally equivalent to 

UCBLogo. 

• Phase 3 – support for advanced graphics (3D modelling and animation), graphical user 

interface, multimedia, etc. At this phase, the compiler is supposed to overpower 

MSWLogo, aUCBLogo and Elica. 



Paper Session 2005-08-29  131 

 

The first phase is expected to complete by the end of year 2005. The timeline for the other 

phases depends solely on the availability of external support. 

The graphical part will be based on OpenGL (SGI, 2004). Like in Elica (and recently in 

aUCBLogo) OpenGL is a good mechanism to provide 3D modelling and animations. Because 

Lhogho is intended to be fast, it should be possible to write complex models, games, scenes, 

and animations. However, some time must be dedicated to design how all these things will be 

available to the users. Whether they should be able to control low-level aspects of the models 

or Lhogho will handle all technicalities. 

Right now, it is not decided whether Lhogho should support multithreading, multiple turtles, 

and object oriented programming. The current design does not rule them out; so most likely 

Lhogho will support them. 

Apart from developing the compiler itself, additional efforts must be dedicated to its 

environment. Advanced users might be happy with a command-line compiler, but to make 

Lhogho easier to be used by beginners, it will be good to provide a special integrated 

environment with suitable graphical user interface, which will organize the process of writing 

and executing programs. Although the compiler is not interactive, it may have a special 

interface with the environment to provide an interactive execution of commands. 

5. References 

Boytchev P (2003), Logo Tree Project, 
<http://www.elica.net/download/papers/LogoTreeProject.pdf> 

Digitool, Inc (1999), Object Logo, 
<http://www.digitool.com/ol-specs.html> 

Elica (2004), Elica Logo, <http://www.elica.net> 

Free Software Foundation (2005), GCC Home Page, <http://gcc.gnu.org> 

Harvey B (2004), Berkeley Logo (UCBLogo), 
<http://www.cs.berkeley.edu/~bh/logo.html> 

Micheler A (2005), Andreas Micheler's Homepage – aUCBLogo's home, 
<http://www.physik.uni-augsburg.de/~micheler> 

Microsoft (2005), Microsoft Windows Family Home Page, 
<http://www. microsoft.com/windows/default.mspx> 

Red Hat, Inc. (2005a), Cygwin, 
<http://www.redhat.com/software/cygwin/index.html?id=home> 

Red Hat, Inc. (2005b), Fedora Project, <http://fedora.redhat.com> 

SGI (2004), The Industry's Foundation for High Performance Graphics 

http://www.opengl.org/ 

Softronics, Inc. (2000), MSWLogo, An Educational programming language 
<http://www.softronix.com/logo.html> 

Wikipedia (2005), MS-DOS, <http://en.wikipedia.org/wiki/MS-DOS> 

(all links last visited in May 2005) 

 


